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This paper describes a two-dimensional numerical model for dynamic transport
and jamming of surface ice in rivers. The hydrodynamic component of the model
uses an Eulerian finite-element method, while the ice dynamic component uses the
smoothed particle hydrodynamics method. The model considers the moving sur-
face ice as a continuum. The internal ice resistance is formulated with a viscous—
plastic constitutive law, in which the pressure term is formulated by modifying the
Coulomb-type constitutive relationship for static ice jams. The partial-slip boundary
condition for ice along solid boundaries is treated by the method of images. The
model is verified with an analytical solution and used to examine the feasibility of
using ice booms to reduce the jamming potential in the Mississippi—Missouri River
confluence. (© 2000 Academic Press
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1. INTRODUCTION

Surface ice runs and ice jams are important river ice processes. Ice runs and ice jam:
interfere with inland navigation, damage hydraulic structures, and cause excessive shor:
erosion. Ice jams can also cause severe flooding by reducing the flow cross section
increasing the flow resistance. The ice jam theory based on static equilibrium of float
accumulations of granular ice is well developed [3]. Flato and Gerard [8] and Beltaos
developed one-dimensional numerical models for computing static ice jam profiles. Sil
the dynamics of ice motion were not considered, the static ice jam theory could not be u
to determine whether, when, and where a jam would form. Moreover, the momentum effe
of ice and water flows on ice jam evolution and thickness were not accounted for in
static ice jam theories. Shemal.[38] developed an analytical framework for the dynamic
transport of river ice and ice jam formation. Lal and Shen [18] developed a one-dimensic
numerical model using the MacCormack method [23] to simulate the river ice transpc
They examined the characteristics of the coupled ice dynamic and hydrodynamic equat
and showed that the leading edge of anice jam acts as a shock front for the stress wave |
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ice layer. They also showed that the speed of the shallow water wave is not affected by
ice condition and that the speed of the stress wave in the ice layer is not related to sha
water wave characteristics. As a result of this independence, water and ice flow equat
need not be solved simultaneously. One-dimensional models have limited applicabi
since river ice transport and jam processes are two-dimensional phenomena owing t
existence of bank friction, irregular channel geometry, and non-uniform water current.

The basic concept of river ice transport is similar to those of sea ice transport [:
and lake ice transport [41]. However, river ice transport is a more dynamic phenomer
River ice problems have much smaller temporal and spatial scales than lake and se
problems and generally have much larger convective terms and larger variations in velc
and concentration. Most of the existing numerical models for sea ice and lake ice dynar
are based on Eulerian finite-difference methods, which have large numerical diffusion
dispersion [16, 41]. Pritcharet al. [33] introduced an adaptive grid scheme, which use
Lagrangian grid cells to follow the motion of the ice edge and reduce the numerical diffusi
across the ice edge. However, this method does not improve the accuracy of the simul:
inside the ice field. Moreover, the method will break down when large ice edge displacen
leads to the rapid distortion of grid cells. Flato [7] applied the particle-in-cell (PIC) methc
[13] to the seaice problem. Although the PIC method is more versatile than the Lagranc
adaptive grid scheme, it still suffers large numerical diffusion due to the back and fo
interpolations between grids and particles at each time step.

The pure Lagrangian method of smoothed particle hydrodynamics (SPH) introduc
by Lucy [22] and Gingold and Monaghan [9, 10] avoids the particle—grid interpolation
The method was originally developed for astrophysical fluid dynamics [11, 15, 26, -
34] and cosmological gas dynamics [6]. Most of these early applications were develo
for problems in infinite domains for media of homogeneous material properties subjec
gravity force only [4]. More recently, the method has been applied to a wider range
flow problems [28]. Shent al.[37] applied SPH to simulate the two-dimensional dynamic
transport of river ice. This was the first application of SPH to ice dynamics, which involv
the full stress tensor with varying material properties.

In the present study, the model of Shehal. [37] is refined by including the water
discharge in the ice layer in the hydrodynamic equations. A nonlinear seepage theol
used to simulate the gradient-induced water flow in the ice layer. With these modificatio
the flow in a grounded ice jam can be correctly modeled and the water mass is consel
The Lagrangian model for ice transport is also refined.

2. GOVERNING EQUATIONS

The movement of surface ice runs in ariver is governed by current and wind drag, grav
interaction between ice elements, and their interactions with river boundaries and hydra
structures.

2.1. Ice Dynamic Equations

Considering the surface ice layer in the river as a continuum, the momentum equa
can be written in a Lagrangian form as
DV
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in whichV = ui + vj, ice velocity;% = % + u;’—x + vaiy; % is acceleration of ice mass;
M = piN{ is ice mass per unit area, i.e., the two-dimensional ice mass dexsjtyandt
are space and time variablgs; N, tj are density, area concentration, and thickness of ice
respectivelyR = i[5 (oxxNt) + 35 (0xyN©)] + [ 5 (9yxNt) + 75 (0yyN )], internal ice
resistancegyy, oyy are normal stress componenigy = oy are shear stress components;
Fa = NpaCa] W|W, wind drag at the air-ice interfac®/ =iWx + jWj, surface wind veloc-
ity at 10 m above the water surfage;is the density of airg, is the wind drag coefficient;
Fw=Npcy|Vw — V|(Vy — V), water drag at the ice—water interfadk,; is depth-averaged
current velocity;o is water densityg,, is the water drag coefficient, which is a function of
the ice roughness and ice and current velocities [36,383;gravitational force due to the
water surface slope; MgVn; andp is the water surface elevation.
The ice mass conservation equation is

DM

Dt + MV.V=0. (2
Since the ice mass per unit ar@4, is determined by the ice concentratidh,and ice layer
thicknesstj, one more conservation equation is needed. The equation of conservatior
ice area within an elemental control area can be obtained by considering the ice area
into and out of the control area and the ice area change due to mechanical redistributic

DN

— +NV-V+ R, =0, (3)
Dt

in which Ry is the rate of change of ice area due to mechanical redistribution. Equations

and (3) can be combined to yield an ice thickness conservation equation:

S V.V + LR @)

A constitutive law is required to describe the ice internal stress. In this study, the widk
used viscous—plastic law [16, 41] is adopted,

oij = 2véij + (¢ — vV)&dij — Pdij/2, (5)
in which ¢, v, nonlinear bulk and shear viscosity, are defined as

P S

=ox and v= (6)

S
in which A2 = D,2 + (Dy/€)?; D, Dy, are the first and second invariant strain rates, respe:
tively; Dy = éxx + €yy; Dt = [(xx — éyy)® + 4e'§y]1/2; e = 2, the principal axes ratio of
the elliptical yield curveg,x = du/dX; éyy = 0v/dy; andéyy = 3(3 + g—;‘/). Shenet al.
[38] suggested an expression for the pressure term, by extending the constitutive relat
ship for static ice jams, as

o ofT @ pi\ oigt [ N\
P= tan?(Z + E)(l_ ;) — ( Nmax) (7

in which ¢ is the internal friction angle of ice, 46 Nmax is the maximum allowable ice
concentration, 0.6; anfl= 15, an empirical constant.
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FIG. 1. Definition sketch.

2.2. Hydrodynamic Equations

Figure 1 shows a definition sketch of river flow with a layer of moving surface-ice floe
The river water discharge is divided into two parts: the discharge in the upper layer, or
ice layer, and the discharge in the lower layer, or the water layer.

The water in the ice layer moves with the ice, but is modified by the relative flow produc
by the water surface gradient. The unit width discharge in the ice layer can be written ¢

qu=VAH@ - N) +0s=0i +0s, (8)

in whichg; is the flow carried by the moving icqg; = VsAH; Vs = ud + vg, the apparent
seepage velocity in the ice layer produced by the hydraulic grajdier(tZ—Zi + 2—;1); N=
ice concentration; andH = H — H’, submerged ice layer thickness. The velogityis
related to the surface gradiehtby the Ergun formula [1],

Vs = AVJ, 9)

in which the seepage coefficients related to the porosity, shape, and size of the ice floe:
Field data indicate that this coefficient has an average value of about 1.6 m/s for brea
jams [2, 3].

The conservation of water and ice mass gives the continuity equation

a / /
glpH + oL =Nt/ + pitiN] = V- (pqi + pQu + piice). (10)

wheret] = piti/p is the submerged ice thicknegsjs water densityH’ = n’ + h, water
depth beneath the ice laydr;is water depth below the reference leval;is unit-width
discharge in the lower layer; amfl¢ is unit-width ice discharge. For a floating surface ice
layer,H" = H —t/;i.e., AH =t/. When (10) is combined with the ice mass conservatiol
equation, the continuity equation for water flow becomes

oH 0

4 V. : = —(Nt). 11

5 TV @+ai a9 = (NE) (11)
When the ice is grounded, regardless of whether it is moving or stationary, the condit

AH =tisnolonger valid, and; is zero. In this case, as shown in Fig. 2, the conservatio
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FIG. 2. Definition sketch for a grounded ice accumulation.

of water mass becomes

A= N)AH] + V- (@ +09 =0 (12
or
oH
o TV @ta) = t(N H). (13)

Neglecting the momentum exchange across the interface between the ice and water la
the momentum equations can be written as

99x +(qlx) +88y(q.xq|y> =_gH/8j+}(rbX_Tsx)+}3Txx_'_EaTxy

ot ox \ H’ H’ ox p aX o ay
(14)
and
day , 9 Gy 9 Axy o 1 19Ty  19Tyx
Ay 2 Ay il — _gH' 2 4+ = = ,
ot +ay(H’ Tax\ T hr gHZY T oy — )+ o
(15)

inwhichrg, 7y are shear stresses at the ice—water interface and on the river bed, respecti
Tik = ¢} (gj‘i q'k ) wherej andk denotex andy coordinate directions; and) is the
generallzed eddy viscosity coefficient.

3. MODEL IMPLEMENTATION

A finite element model using the lumped mass technique and leapfrog time integrat
[5] is used for the hydrodynamic component. The ice dynamic simulation using SPH
presented here. The ice dynamic and hydrodynamic components are coupled throug|
interaction at the interface between the two layers.

3.1. SPH Simulation

The ice dynamic equations are solved using the SPH method [25, 26]. The movemer
ice is simulated with a sufficiently large number of particles, which carry mass, momentu
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and energy. The terparticle represents a material element, which is an ice parcel contai
ing a collection of ice pieces. The non-advective terms in the equations are simulatec
interpolating the property of the tracing particle with its neighboring particles. We defil
m; andM; as the mass and mass density of partjclecated at ;, andn; as the number
density, i.e., number of particles per unit area. By consideringNhat n;m;, the kernel
estimation of a functiorf (r) can be expressed as [26]

N N

- fi m;

f(r,|)=§ n—{W(r—r;,l):E fiM—{W(r—rJ,l), (16)
j=1 j=1 !

in whichl is the smoothing length, which determines the range of influence of the intery
lation kernelW. In the present study, the following Gaussian kernel is used:

1
G(r,rj, 1) = —5& (=212, (17)

The mass density at the location of parkgly, can be obtained from Eq. (16) as

Mkzzij(rk—rJ’,l):ijija (18)
j i

in which Wy; denotes the average of interpolation kernels of pakcahd j, W; =
[W(rg;j, k) + W(rg, 1;)]/2[15]. The ice massis automatically conserved in the above forn
The ice concentration can be determined from the calculated ice mass density. The ice
concentration is first calculated from the single layer ice thickhgd<e., Ny = My/(piti,)-
The ice concentration is limited by its maximum vaNga.x. When this limitis reached me-
chanical thickening occurs. Sind& = pi Niti, = pi Nmax(ti)k, the ice thickness is modified
to (t)k = M/ (0i Nmax -

The momentum balance of partidtegives its acceleration,

DV 1
_ <Dt)k = . [Re+ Fadct (Fuc+ Bl (19)

The internal and external forces can be calculated as the following [36]:

e Internal ice resistano@)x = i(R)k +J (Ry)k,

(RO = Sm {[“xx'\'g)u(oxxm)j} IW,
(Mi)k

(Mi)k (MpF | 9x
(nyNti)k (nyNti)j:| aij}
L , 20
[ (Mi)Z (M3 | ay (20)
(oyy Ntk (nyNﬁ)I} IWk
R ' +
iy o= z]:mj{[ M) (M)T |
|:(0nyti)k (nyNti)j:| aij} (1)
(Mg (M3 | ax [

in which (oxx)k, (oyy)k, and (oyxy)k = (oyx)k are internal stresses at, where parcek
is located. From the viscous constitutive law they can be expressed in terms of velo
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gradients, viscosity coefficients, and ice pressure as

_ au au av Pk
o =an(Gy) ~o-wl(5)+ (55).) -3 2
d ou d Py
=) ~ewl(5), + ()] -2
ov au
(oxk = UkKw) " <8><>J @9

The velocity gradients can be expressed as

(23)

(g_i)k - (Tlnk;mi(uj - “k>% (25)
(z;>k= (l\jok — ‘”k)ag\;kj (26)
(%) (M, )kzm (vj _Uk)aWkJ (27)
(55), = W, = - (28)

e Wind drag(Fa)k =i(taxN)k + j (tayN)i,

(Tax)k = PaCal W k(W) (29)
(Tay)k = PaCal W [k (Wy)k, (30)

in which (W) is the wind velocity at the location of pardel
e Water drag(Fy)k =i (twx Nk + j (twy N )k,

(twx)k = PCw|Vw — Vilk(Mux — Uk (31)
(Twy)k = PCw|Vw — Vi |k(wa - Vk, (32)

in which (V) is the water current velocity af, anduy, vk are components of ice velocity
of parcelk in x andy directions.
e Gravitational force(G)x =i(Gy)k + j (Gy)x,

a
Gk = —(Mi)kg<£> (33)

k

0
(Gyk = —(Mi)kg<az> . (34)
K

Since the water drag force is a function of the square of ice velocity, it is difficult t
integrate Eg. (19) explicitly. The fourth-order Runge—Kutta method is used to calculate
ice velocity at time"*1,
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The leapfrog scheme for time stepping is applied. The parcel velocities are calculate
half time steps, i.et"~%/2,t"*1/2 . Parcel positions are calculated at tithet™?, .. ..
The advance of the position of pardeis calculated by

rett=rl + AtVE, (35)

in which V3 = %(Vi”k_l/z +Vi”k+1/2). After all parcels move to their new positions, the
distribution of ice properties such as mass density, concentration, and thickness ca
updated by interpolations. For the leapfrog scheme, the stability condition or time ste
limited by the Courant condition. The time step for patced determined by

(Stk=,3min< Tl ) (36)

lax|” vkl + C«

whereax andc, are the parcel acceleration and speed of sound determined by the
properties;s is the Courant number, which is 1.0.

Due to the small numerical diffusion, the SPH method often needs an artificial viscos
[4, 27, 31], especially for non-viscous material. The artificial viscosity mimics a bul
viscosity, which is used in the SPH method to damp the shock wave caused by the pres
term. The experience from the present study indicates that the artificial viscosity is
necessary for river ice dynamics because the ice viscosity and the water drag provide
necessary damping. The stability analysis of the SPH algorithm by Sete|§39] showed
that the instability would normally only occur in tension. It is not a problem in the prese
study. This is due to the negligible tensile stress in ice and the influence of the water c
on the ice motion.

3.2. Bed Resistance

The bed friction affects the motion of ice when it is grounded. The magnitude of the b
friction can be calculated from the submerged weight of the ice as

IFc|= N[piti — p(n + h)]gtangy, (37)

in which tangy, the bed-to-ice friction coefficient. In the model, the bed frictional force
always opposes the motion of the ice or its tendency to move. A local coordinate systel
used for each parcel in calculating the parcel velocity. For an ice parcel having a velo
V" £ 0 att", the localx-coordinate is selected to coincide with the directioivdf Thex
andy components of the equation of motion are

Du
a = Ftljx - |FG,x| (38)

and

Dv {Ft?y —IFeyl if Fy>Fcy (39)

Dt |0 if F, < Foy

in which F" is the total force acting on the parcel, excluding the bed friction force. |
V" = 0, then choose the local coordinate to coincide with the global coordinate, and b
x andy components of the equation of motion are the same as Eq. (39).
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3.3. Boundary Conditions

Upstream boundary conditions consist of ice concentration, thickness, and velocity. -
free drift approximation may be used because the observed ice velocity at the bounda
usually not available. Along solid boundaries, such as riverbanks or dikes, the bounc
resistance to the ice motion needs to be considered. The boundary friction exists only w
the ice is moving toward the boundary. The boundary friction is calculated based o
dynamic Coulomb yield criterion [12],

Ff = FC + FN tanqu, (40)

in which F; is the friction force between the ice and the bounddfyjs the cohesive
force, assumed to be zero; agis the dynamic friction coefficient; anBl is the normal
component of the ice force acting on the boundary, which can be calculated from
component of internal ice force normal to the bound&y—= oy Ntlg. The contact length
of the boundary ice parcdk, can be approximated by the square root of the parcel are
AA =m/(piNt). Similar to the bed resistance, the bank frictiénalways opposes the
tangential motion, or the tendency of the motion, of the ice along the bank. To determ
Ry, the interaction between the ice particle and the solid boundary has to be formulat
Several methods, including immobile boundary particle, repulsive forces, and the metho
images, have been used in SPH to implement solid boundary conditions [24]. The immo
boundary particle method involves placing stationary particles of fixed size along the sc
boundary. These particles are included in the summations, and their velocities are set to
after each time step. Since the size and momentum of moving particles change with ti
they may be pushed across the boundary due to the unbalanced ice force. This methodis
valid for inactive boundaries where there are no new forces being applied to the bounc
[24]. The repulsive force model [29, 30] has the same problem of particles crossing o
as the immobile particle method, since the force coefficients are assumed to be cons
The method of images has been used by Libersky and Petschek [19] and Shen and
[36]. In this study, the partial-slip solid boundary condition will be implemented using th
method of images. In this method, an imaginary patrticle is placed on the opposite side of
boundary for every real particle that is located within a normal distaho&tBe boundary.
Eachimaginary particle has the same mass, concentration, pressure, and tangential ve
as the corresponding real particle. The normal velocity is opposite that of the real parti
i.e., v =—wvn andvf = v, whereu, is tangential velocityp, is normal velocity, and the
superscript denotes quantities associated with an imaginary particle. The normal interi
stresses of imaginary parcels are the same as those of the real ones;—xji;e.axx”
oy, =oyy,—but the shear stress is in the opposite direction—é;5, = —oxy;.

3.4. Smoothing Length and Search Area

Since the density of the particle distribution changes in space and time, it is heces:
to vary the smoothing length of particles in order to achieve maximum efficiency and :
curacy. Each particle should have its own smoothing length. Gingold and Monaghan [
suggested that for two-dimensional problems, the smoothing léretbuld be inversely
proportional to the square root of the particle number density. In the ice dynamics sin
lation, the smoothing length can be estimatet!"as=1o(}42)%2, in whichl, is the initial
smoothing length, ani, is the initial mass density. In the mod#,is selected to be the
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linear dimension of the initial parcel areg A Aq. Benz [4] developed an evolution equation
for smoothing length a% = %I V - V. Hence, the smoothing length is formulated as

At
|n+l=|2+l+ 7|::-‘r:|.(v V)n (41)
and
Mo 1/2
|Q+1=|0(Mn) . (42)

Theoretically, the larger the search range the higher the accuracy. However, the simule
time will increase dramatically with the search area, especially in a high-ice-concentrat
area where many particles accumulate in a small area. On the other hand, a small searc
may cause stability problems [39]. Considering accuracy, stability, and simulation time
suitable search range should be selected. The search area can be estimated by consi
an ice field with uniformly distributed particles of the same nassize A A, and density
M. Based on its definition, the particle mass is

m=AAM = AXAyp;Nt, (43)
whereAxAy = AA, parcel size. If the smoothing length is selected as
I =lx=ly=AXx=Ay, (44)

then a square search ared4ifx 4l) centered aty will encompass 5 5 parcels. The mass
density atry can be determined from Eq. (18) using the Gaussian kernel as

AA,
Mic =) mjW; = T 271] g eT/1?
j j
AXAY 4 4 4 4 8
- 1+-4+ 242424 %,
e ( +e+e4+e2+e8+e5> j
— 0.999928M. (45)

This shows that a search area bfd4l is sufficient if the smoothing length ig A A.

3.5. Search of Neighboring Particles

The algorithm for particle search plays an important role in the SPH method. The linke
list method, which uses grid cells as a bookkeeping device, is the method most comm
used in particle simulation [17]. Although it is an efficient search method, an auxiliary gt
system is required. Since the method is grid-based, asymmetrical searches and inaccu
in interpolation may result when the reference particle is not located near the cente
a grid. Another disadvantage of the method is that the search is performed grid by ¢
which results in unnecessary searches, especially when the particle distribution is hi
non-uniform in the search area. Rhoades [35] proposed an improved algorithm for SPH
is similar to the linked-list method. Although the method remains grid-based, the searc
performed particle by particle, instead of grid by grid, to save computing time. The res
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is a method slightly faster than the conventional linked-list method. Another advantage
the method is that the number of particles in each cell at the current time step is kno
This can provide an estimate of the density and smoothing length. However, since the
size cannot be changed during the simulation, the asymmetrical search problem remair
addition, a three-dimensional array is required for two-dimensional simulations. Hernqt
and Katz [15] suggested the use of the hierarchical tree algorithm, which does not req
a grid. Although the search area is flexible, the method is time-intensive. The present st
utilizes a sorted-list algorithm to search for neighboring particles. There are a numbel
sorted-list methods available, as reviewed by Helregal. [14]. Considering that a river
ice problem usually has a long narrow solution domain, the HeapSort method is used in
present model, with the-coordinates of the particles as the heap key to permit a variab
search area.

4. MODEL VERIFICATION

An analytical solution for the width-averaged static ice jam thickness profile can |
obtained for an idealized ice jam. For a hypothetical straight uniform rectangular chan
with uniform current and for which wind velocity, bank friction, and water surface slop
are all assumed to be zero, only theomponent of the momentum equation needs to b
considered. Equation (1) reduces to

Ry + Fux =0, (46)
in which Ry = -2 (P Nmadi); Fux = pCwVi2,, drag at the ice—water interfac,, is the

current velocity; andC,, is the drag coefficient. Based on Eq. (46), a simple analytice
solution for the thickness profile of the static ice jam can be obtained,

(2 2pCuw Vi _)1/2
L (t'°+tar?(n/4+¢/2>(1—pi/mpigx' ’ “7)

in whichtj, is the single layer ice thickness ards the distance from the leading edge of
the jam, wherd; = tj,.

When the bank friction is considered, an analytical solution for the width-averaged stz
ice jam thickness profile can be obtained by extending the solution of Pariset and Hau:
[32],

1/2

b = tag(1 — e~ @1/%) (48)

where the equilibrium ice thicknesg,is [32]

BNGC, V2 1/2
fea= » : 49
‘ (gMZ(Pi/P(l_Pi/P)> (49)

in which uo, = N tang (1 + sing) andu; = tang (1 — sing) [3]. For ¢ =46°, u, =1.068
andu1 =0.29. The above solution of Pariset and Hausser [32] assumed that the ice Ia
is a continuum. Therefore the minimum jam thickness is not limited by the single-lay
thicknesd;, as in Eq. (47).
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FIG. 3. Comparison of simulation results with the analytical solution, without bank resistance.

The numerical simulation results are compared in Figs. 3 and 4 with the analyti
solutions. The channel has a length of 5000 m, a width of 500 m, a constant water velo
of 0.6 m/s, and a zero water-surface slope. The boom is located 500 m from the downstr
boundary and assumed to be 100% effective;i.e., noice is allowed to pass the boom. Initi
900 ice parcels of size 5050 m having a thickness of 0.2 m and a concentration of 0.6 a
placed over the water surface between the upstream boundary and the boom. These ice
are allowed to move toward the boom under the influence of the water drag. The coeffic
Cw is 0.02. The analytical and numerical solutions give comparable results.

According to the viscous—plastic constitutive law, the viscosity approaches infinity wh
the ice approaches the static condition. A common way to avoid this singularity probl
is to set a large limiting value fo¢ and v in the numerical model. This approximation
changes the constitutive relationship to a linear viscous law and the shear stress appro:
zero when the strain rate approaches zero. Such a change will not be able to simulat
stoppage of ice motion and the jam formation. In this study, the constitutive law is modifi
for small strain rate conditions to avoid this problem. In the simulation, critical values
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FIG. 4. Comparison of simulation results with the analytical solution, with bank resistance.

gij and P for each ice parcel are determined when the following conditions are satisfie
(1) ice parcel velocity is less than a small critical value (0.001 m/s); (2) ice parcel veloc
is less than the value in the previous time step; and )s; — £;| is less than a small
critical values. =1 x 10~% s~1. When these critical conditions are reached, the following
approximation is introduced to calculate ice stresses for the ice parcel,

P
% = %ic > (50)
[

in which gjc and P are values of;; and P corresponding to the above-mentioned critical
conditions. In addition, when the velocity of an ice parcel remains less than 0.5 mm/s,
parcel is stopped. Using this method, ice jam formation can be simulated by the viscc
plastic constitutive law.
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5. MODEL APPLICATION

Ice retention structures such as floating booms installed upstream of a river reach \
high jamming potential could alleviate ice jam problems by preventing or reducing i
discharge to the problem reach. A floating ice boom is designed to submerge when
ice load becomes excessive, thereby allowing the ice to pass over the boom. In orde
the boom to be effective additional hydraulic conditions have to be satisfied. The surf
water velocity at the boom site has to be less than a critical entrainment velocity so that
floes arriving at the site will not turn under at the boom or at the leading edge of the
accumulated behind the boom. The flow velocity underneath the ice accumulation shc
also be less than a critical erosion velocity. Due to the highly unsteady nature of river
processes, the use of laboratory models or field tests to determine the feasibility and de
of ice booms can be costly and difficult. Numerical modeling provides a viable alternat
for this purpose, as demonstrated in the following feasibility study for an ice boom in t
Missouri River upstream of the Mississippi—Missouri River confluence.

The middle Mississippi River, which stretches 198 miles from its confluence with tt
Missouri River near St. Louis to where it joins the Ohio River at Cairo, lllinois, is a vite
navigation route. During winter months, ice from the Missouri River and the ice genera
in the uncontrolled sections of the Mississippi River can form accumulations that block
the middle Mississippi to shipping. Tuthill and Mamone [40] suggested the possibility
installing ice booms in the lower Missouri River to reduce the potential for ice jams in tl
middle Mississippi River. They examined the winter flow conditions in the Missouri Rive
and suggested that river mile (RM) 16 is a possible location for an ice boom. A numeri
study was performed using the present numerical model to study the feasibility of suct
installation [20]. A simulation of the boom load resulting from an ice run, which caused
ice jam in the middle Mississippi River in January 1977, is presented in this section. T
model domain covers the reach between RM 13 and RM 20 with the boom located at |
16. The channel geometry is shown in Figs. 5 and 6.

The bed roughness was first calibrated based on the observed water level and discl
data for an open water condition that occurred in September 1994 and compared
the backwater simulation results of Tuthill and Mamone [40]. The ice model paramet
were calibrated with the data of the January 1997 ice jam event. The calibrated mc
parameters are given in Table I. The initial condition was a steady state ice-free fi
at a discharge of 5665 (20,000 cfs. The downstream boundary condition imposed a
RM 13 was a water surface elevation of 1261(405.6 ft). Upstream boundary conditions
consisted of a constant water discharge of 58&120,000 cf$ and an ice discharge of
11.3m%/s(400cfy. The goal of the simulation was to examine the development of ic

TABLE |
Parameters Used in the Ice Dynamic Simulation

Parameter Description Value
Nimax Maximum ice concentration 0.6
¢ Internal friction angle of ice 46
tang Boundary friction coefficient 1.04
j Empirical constant 15

n; Manning’s coefficient on ice .02~ 0.06
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FIG.5. Bed elevation between RM 13 and RM 20.

jam and boom load under a normal flow condition assuming that the boom was 10
effective. Limiting conditions for ice accumulation behind the boom were not imposed
the simulation. It was assumed that no ice entrainment or erosion would occur and |
no ice would pass the boom. The simulation results indicated that the ice thickness at
boom location was large and that the ice grounded across most of the channel width |

Bed Elevation (m)
119 120 121 122 123 124 125 126 12?
Mile 18
g Mile 17

[+]

Mile 16

300 m Boom Location
[

FIG. 6. Bed elevation in the vicinity of the boom.
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FIG. 7. Simulated ice thickness distribution behind the bobm 8 h.

the boom, as shown in Figs. 7-9. The ice accumulation increased upstream water le
significantly, as shown in Fig. 10. The load distribution on the boom is shown in Fig. 1
The boom load leveled off as the jam extended upstream. This was due to the groun
of the jam, as well as the increase in bank resistance as the jam progressed upstrean
maximum load per unit width was in the range of 40 to 50 kN/m, which was too high fi
a conventional river ice boom. Before the present study, ice retention behind booms:
considered to be marginally possible, based on a conventional one-dimensional stati
jam model [40]. For problem ice years on the middle Mississippi River, average Misso
River discharge is about 850°8 (30,000 cf$. Numerical simulations carried out in the

present study found that ice retention behind booms is unfeasible even at a much Ic
discharge of 566 fis (20,000 cfs. Additional simulations also showed that under-ice wate
velocities near booms were sufficiently high to cause ice erosion and to halt upstream
cover progression. Ice retention behind booms is not feasible in this reach, unless a spec
designed boom with high retention capacity can be developed.

Ice Thickness (m)
Hour 10

Mile 18 1.0
o

Mile 16 0:0

Boom Location

FIG. 8. Simulated ice thickness distribution behind the bobra, 10 h.
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6. SUMMARY AND CONCLUSION

A two-dimensional numerical model for dynamic transport and jamming of surfa
ice in rivers is presented. The hydrodynamic component of the model uses an Eule
finite-element method, while the ice dynamic component of the model uses the Lagrant
smoothed-particle hydrodynamics method. The model considers the moving surface
as a continuum. The internal ice resistance is formulated according to a viscous—ple
constitutive law, in which the pressure term is formulated by modifying the coulomb-ty
constitutive relationship for static ice jams. The partial-slip dynamic boundary conditi
for ice along river banks and other solid boundaries is treated by the method of images
entrainment at floating ice booms or the leading edge of the ice accumulation, erosion o
on the underside of the ice accumulation, and the limiting ice boom load for ice retent
were considered in the model.

The numerical model was validated with analytical solutions for idealized static ice ja
with or without bank friction. The model was used to study the feasibility of using ice boor
to retain ice in the lower Missouri River to reduce the ice discharge into the Mississif
River. A conventional one-dimensional ice jam model predicted that stable ice accumula
was possible [40], but was unable to address the dynamic processes as well as ice er
and entrainment. The present two-dimensional ice dynamic model proved to be a valu
tool for addressing important design issues that could not be answered by conventi
methods. The model was able to determine if ice retention behind a proposed boom
possible. It could also determine the load distribution along the boom and answer
important question of whether the accumulation behind the boom would be able to prog
upstream. In addition to its application in ice boom designs, the numerical model is cape
of simulating dynamic ice transport and jamming processes in natural rivers with comp
geometry and flow conditions [21].
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