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This paper describes a two-dimensional numerical model for dynamic transport
and jamming of surface ice in rivers. The hydrodynamic component of the model
uses an Eulerian finite-element method, while the ice dynamic component uses the
smoothed particle hydrodynamics method. The model considers the moving sur-
face ice as a continuum. The internal ice resistance is formulated with a viscous–
plastic constitutive law, in which the pressure term is formulated by modifying the
Coulomb-type constitutive relationship for static ice jams. The partial-slip boundary
condition for ice along solid boundaries is treated by the method of images. The
model is verified with an analytical solution and used to examine the feasibility of
using ice booms to reduce the jamming potential in the Mississippi–Missouri River
confluence. c© 2000 Academic Press
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1. INTRODUCTION

Surface ice runs and ice jams are important river ice processes. Ice runs and ice jams can
interfere with inland navigation, damage hydraulic structures, and cause excessive shoreline
erosion. Ice jams can also cause severe flooding by reducing the flow cross section and
increasing the flow resistance. The ice jam theory based on static equilibrium of floating
accumulations of granular ice is well developed [3]. Flato and Gerard [8] and Beltaos [2]
developed one-dimensional numerical models for computing static ice jam profiles. Since
the dynamics of ice motion were not considered, the static ice jam theory could not be used
to determine whether, when, and where a jam would form. Moreover, the momentum effects
of ice and water flows on ice jam evolution and thickness were not accounted for in the
static ice jam theories. Shenet al. [38] developed an analytical framework for the dynamic
transport of river ice and ice jam formation. Lal and Shen [18] developed a one-dimensional
numerical model using the MacCormack method [23] to simulate the river ice transport.
They examined the characteristics of the coupled ice dynamic and hydrodynamic equations
and showed that the leading edge of an ice jam acts as a shock front for the stress wave in the
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ice layer. They also showed that the speed of the shallow water wave is not affected by the
ice condition and that the speed of the stress wave in the ice layer is not related to shallow
water wave characteristics. As a result of this independence, water and ice flow equations
need not be solved simultaneously. One-dimensional models have limited applicability,
since river ice transport and jam processes are two-dimensional phenomena owing to the
existence of bank friction, irregular channel geometry, and non-uniform water current.

The basic concept of river ice transport is similar to those of sea ice transport [16]
and lake ice transport [41]. However, river ice transport is a more dynamic phenomenon.
River ice problems have much smaller temporal and spatial scales than lake and sea ice
problems and generally have much larger convective terms and larger variations in velocity
and concentration. Most of the existing numerical models for sea ice and lake ice dynamics
are based on Eulerian finite-difference methods, which have large numerical diffusion and
dispersion [16, 41]. Pritchardet al. [33] introduced an adaptive grid scheme, which uses
Lagrangian grid cells to follow the motion of the ice edge and reduce the numerical diffusion
across the ice edge. However, this method does not improve the accuracy of the simulation
inside the ice field. Moreover, the method will break down when large ice edge displacement
leads to the rapid distortion of grid cells. Flato [7] applied the particle-in-cell (PIC) method
[13] to the sea ice problem. Although the PIC method is more versatile than the Lagrangian
adaptive grid scheme, it still suffers large numerical diffusion due to the back and forth
interpolations between grids and particles at each time step.

The pure Lagrangian method of smoothed particle hydrodynamics (SPH) introduced
by Lucy [22] and Gingold and Monaghan [9, 10] avoids the particle–grid interpolations.
The method was originally developed for astrophysical fluid dynamics [11, 15, 26, 28,
34] and cosmological gas dynamics [6]. Most of these early applications were developed
for problems in infinite domains for media of homogeneous material properties subject to
gravity force only [4]. More recently, the method has been applied to a wider range of
flow problems [28]. Shenet al.[37] applied SPH to simulate the two-dimensional dynamic
transport of river ice. This was the first application of SPH to ice dynamics, which involves
the full stress tensor with varying material properties.

In the present study, the model of Shenet al. [37] is refined by including the water
discharge in the ice layer in the hydrodynamic equations. A nonlinear seepage theory is
used to simulate the gradient-induced water flow in the ice layer. With these modifications,
the flow in a grounded ice jam can be correctly modeled and the water mass is conserved.
The Lagrangian model for ice transport is also refined.

2. GOVERNING EQUATIONS

The movement of surface ice runs in a river is governed by current and wind drag, gravity,
interaction between ice elements, and their interactions with river boundaries and hydraulic
structures.

2.1. Ice Dynamic Equations

Considering the surface ice layer in the river as a continuum, the momentum equation
can be written in a Lagrangian form as

M
DV
Dt
= R+ Fa+ Fw +G, (1)
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in whichV = ui + vj , ice velocity; D
Dt = ∂

∂t + u ∂
∂x + v ∂

∂y ; DV
Dt is acceleration of ice mass;

M = ρi Nti is ice mass per unit area, i.e., the two-dimensional ice mass density;x, y, andt
are space and time variables;ρi, N, ti are density, area concentration, and thickness of ice,
respectively;R = i[ ∂

∂x (σxxNti)+ ∂
∂y (σxyNti)] + j [ ∂

∂x (σyxNti)+ ∂
∂y (σyyNti)], internal ice

resistance;σxx, σyy are normal stress components;σxy= σyx are shear stress components;
Fa = Nρaca|W|W, wind drag at the air–ice interface;W= iWx + jWy, surface wind veloc-
ity at 10 m above the water surface;ρa is the density of air;ca is the wind drag coefficient;
Fw= Nρcw|Vw − V|(Vw − V), water drag at the ice–water interface;Vw is depth-averaged
current velocity;ρ is water density;cw is the water drag coefficient, which is a function of
the ice roughness and ice and current velocities [36, 38];G is gravitational force due to the
water surface slope,−Mg∇η; andη is the water surface elevation.

The ice mass conservation equation is

DM

Dt
+ M∇ · V = 0. (2)

Since the ice mass per unit area,M , is determined by the ice concentration,N, and ice layer
thickness,ti , one more conservation equation is needed. The equation of conservation of
ice area within an elemental control area can be obtained by considering the ice area flux
into and out of the control area and the ice area change due to mechanical redistribution,

DN

Dt
+ N∇ · V + Ra = 0, (3)

in which Ra is the rate of change of ice area due to mechanical redistribution. Equations (2)
and (3) can be combined to yield an ice thickness conservation equation:

∂ti
∂t
= −V · ∇ti + ti

N
Ra. (4)

A constitutive law is required to describe the ice internal stress. In this study, the widely
used viscous–plastic law [16, 41] is adopted,

σi j = 2υε̇i j + (ς − υ)ε̇kδi j − Pδi j /2, (5)

in whichς, υ, nonlinear bulk and shear viscosity, are defined as

ς = P

21
and υ = ς

e2
, (6)

in which12 = D2
I + (DII/e)2; DI DII are the first and second invariant strain rates, respec-

tively; DI = ε̇xx + ε̇yy; DII = [(ε̇xx − ε̇yy)
2+ 4ε̇2

xy]
1/2; e= 2, the principal axes ratio of

the elliptical yield curve;̇εxx = ∂u/∂x; ε̇yy = ∂v/∂y; and ε̇xy= 1
2(
∂v
∂x + ∂u

∂y ). Shenet al.
[38] suggested an expression for the pressure term, by extending the constitutive relation-
ship for static ice jams, as

P = tan2

(
π

4
+ φ

2

)(
1− ρi

ρ

)
ρigti

2

(
N

Nmax

) j

(7)

in which φ is the internal friction angle of ice, 46◦; Nmax is the maximum allowable ice
concentration, 0.6; andj = 15, an empirical constant.
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FIG. 1. Definition sketch.

2.2. Hydrodynamic Equations

Figure 1 shows a definition sketch of river flow with a layer of moving surface-ice floes.
The river water discharge is divided into two parts: the discharge in the upper layer, or the
ice layer, and the discharge in the lower layer, or the water layer.

The water in the ice layer moves with the ice, but is modified by the relative flow produced
by the water surface gradient. The unit width discharge in the ice layer can be written as

qu=V1H(1− N)+ qs= qi + qs, (8)

in whichqi is the flow carried by the moving ice;qs = Vs1H ; Vs = usi + vsj , the apparent
seepage velocity in the ice layer produced by the hydraulic gradientj = ( ∂η

∂x i + ∂η

∂y j); N=
ice concentration; andδH = H − H ′, submerged ice layer thickness. The velocityVs is
related to the surface gradientJ by the Ergun formula [1],

Vs = λ
√

J, (9)

in which the seepage coefficientλ is related to the porosity, shape, and size of the ice floes.
Field data indicate that this coefficient has an average value of about 1.6 m/s for breakup
jams [2, 3].

The conservation of water and ice mass gives the continuity equation

∂

∂t
[ρH ′ + ρ(1− N)t ′i + ρi ti N] = ∇ · (ρql + ρqu+ ρiqice), (10)

wheret ′i = ρi ti/ρ is the submerged ice thickness;ρ is water density;H ′ = η′ + h, water
depth beneath the ice layer;h is water depth below the reference level;ql is unit-width
discharge in the lower layer; andqice is unit-width ice discharge. For a floating surface ice
layer,H ′ = H − t ′i ; i.e.,1H = t ′i . When (10) is combined with the ice mass conservation
equation, the continuity equation for water flow becomes

∂H

∂t
+∇ · (ql + qi + qs)= ∂

∂t
(Nt′i ). (11)

When the ice is grounded, regardless of whether it is moving or stationary, the condition
1H = t ′i is no longer valid, andql is zero. In this case, as shown in Fig. 2, the conservation
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FIG. 2. Definition sketch for a grounded ice accumulation.

of water mass becomes
∂

∂t
[(1− N)1H ] +∇ · (qi + qs) = 0 (12)

or
∂H

∂t
+∇ · (qi + qs) = ∂

∂t
(N H). (13)

Neglecting the momentum exchange across the interface between the ice and water layers,
the momentum equations can be written as

∂qlx

∂t
+ ∂

∂x

(
q2

lx

H ′

)
+ ∂

∂y

(
qlxqly

H ′

)
= −gH′

∂η

∂x
+ 1

ρ
(τbx − τsx)+ 1

ρ

∂Txx

∂x
+ 1

ρ

∂Txy

∂y

(14)

and

∂qly

∂t
+ ∂

∂y

(
q2

ly

H ′

)
+ ∂

∂x

(
qlxqly

H ′

)
= −gH′

∂η

∂y
+ 1

ρ
(τby − τsy)+ 1

ρ

∂Tyy

∂y
+ 1

ρ

∂Tyx

∂x
,

(15)

in whichτ s, τ b are shear stresses at the ice–water interface and on the river bed, respectively;
Tjk = εwjk( ∂qlj

∂xk
+ qlk

∂xj
), where j andk denotex andy coordinate directions; andεwjk is the

generalized eddy viscosity coefficient.

3. MODEL IMPLEMENTATION

A finite element model using the lumped mass technique and leapfrog time integration
[5] is used for the hydrodynamic component. The ice dynamic simulation using SPH is
presented here. The ice dynamic and hydrodynamic components are coupled through the
interaction at the interface between the two layers.

3.1. SPH Simulation

The ice dynamic equations are solved using the SPH method [25, 26]. The movement of
ice is simulated with a sufficiently large number of particles, which carry mass, momentum,
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and energy. The termparticle represents a material element, which is an ice parcel contain-
ing a collection of ice pieces. The non-advective terms in the equations are simulated by
interpolating the property of the tracing particle with its neighboring particles. We define
mj andM j as the mass and mass density of particlej located atr j , andnj as the number
density, i.e., number of particles per unit area. By considering thatM j = nj mj , the kernel
estimation of a functionf (r) can be expressed as [26]

f̃ (r , l ) =
N∑

j=1

f j

n j
W(r − r j , l ) =

N∑
j=1

f j
mj

M j
W(r − r j , l ), (16)

in which l is the smoothing length, which determines the range of influence of the interpo-
lation kernelW. In the present study, the following Gaussian kernel is used:

G(r , r j , l ) = 1

π l 2
e−(r−r j )

2/ l 2
. (17)

The mass density at the location of parcelk, r k, can be obtained from Eq. (16) as

Mk =
∑

j

mj W(r k − r j , l ) =
∑

j

mj Wkj , (18)

in which Wkj denotes the average of interpolation kernels of parcelk and j , Wkj =
[W(r k j , lk)+W(r k j , l j )]/2 [15]. The ice mass is automatically conserved in the above form.
The ice concentration can be determined from the calculated ice mass density. The ice area
concentration is first calculated from the single layer ice thicknesstio; i.e.,Nk = Mk/(ρi tio).
The ice concentration is limited by its maximum valueNmax. When this limit is reached me-
chanical thickening occurs. SinceMk= ρi Nktio = ρi Nmax(ti)k, the ice thickness is modified
to (ti)k = Mk/(ρi Nmax).

The momentum balance of particlek gives its acceleration,

ak=
(

DV
Dt

)
k

= 1

Mk
[Rk + (Fa)k + (Fw)k +Gk]. (19)

The internal and external forces can be calculated as the following [36]:

• Internal ice resistance(R)k = i(Rx)k + j(Ry)k,

1

(Mi)k
(Rx)k =

∑
j

mj

{[
(σxxNti)k
(Mi)

2
k

+ (σxxNti) j

(Mi)
2
j

]
∂Wkj

∂x

+
[
(σxyNti)k
(Mi)

2
k

+ (σxyNti) j

(Mi)
2
j

]
∂Wkj

∂y

}
, (20)

1

(Mi)k
(Ry)k =

∑
j

mj

{[
(σyyNti)k
(Mi)

2
k

+ (σyyNti) j

(Mi)
2
j

]
∂Wkj

∂y

+
[
(σyxNti)k
(Mi)

2
k

+ (σyxNti) j

(Mi)
2
j

]
∂Wkj

∂x

}
, (21)

in which (σxx)k, (σyy)k, and (σxy)k= (σyx)k are internal stresses atr k, where parcelk
is located. From the viscous constitutive law they can be expressed in terms of velocity
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gradients, viscosity coefficients, and ice pressure as

(σxx)k = 2υk

(
∂u

∂y

)
k

− (ςk − υk)

[(
∂u

∂x

)
k

+
(
∂v

∂y

)
k

]
− Pk

2
(22)

(σyy)k = 2υk

(
∂v

∂y

)
k

− (ςk − υk)

[(
∂u

∂x

)
k

+
(
∂v

∂y

)
k

]
− Pk

2
(23)

(σxy)k = υk

[(
∂v

∂y

)
k

+
(
∂u

∂x

)
k

]
. (24)

The velocity gradients can be expressed as(
∂u

∂x

)
k

= 1

(Mi ) k

∑
j

mj (u j − uk)
∂Wkj

∂x
(25)

(
∂u

∂y

)
k

= 1

(Mi ) k

∑
j

mj (u j − uk)
∂Wkj

∂y
(26)

(
∂v

∂x

)
k

= 1

(Mi ) k

∑
j

mj (v j − vk)
∂Wkj

∂x
(27)

(
∂v

∂y

)
k

= 1

(Mi ) k

∑
j

mj (v j − vk)
∂Wkj

∂y
. (28)

• Wind drag(Fa)k= i(τax N)k + j(τayN)k,

(τax)k = ρaca|W|k(Wx)k (29)

(τay)k = ρaca|W|k(Wy)k, (30)

in which (W)k is the wind velocity at the location of parcelk.
• Water drag(Fw)k= i(τwx N)k + j(τwyN)k,

(τwx)k = ρcw|Vw − V i |k(Vwx − u)k (31)

(τwy)k = ρcw|Vw − V i |k(Vwy − v)k, (32)

in which(Vw)k is the water current velocity atr k, anduk, vk are components of ice velocity
of parcelk in x andy directions.
• Gravitational force(G)k= i(Gx)k + j(Gy)k,

(Gx)k = −(Mi)kg

(
∂η

∂x

)
k

(33)

(Gx)k = −(Mi)kg

(
∂η

∂x

)
k

. (34)

Since the water drag force is a function of the square of ice velocity, it is difficult to
integrate Eq. (19) explicitly. The fourth-order Runge–Kutta method is used to calculate the
ice velocity at timetn+1.
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The leapfrog scheme for time stepping is applied. The parcel velocities are calculated at
half time steps, i.e.,tn−1/2, tn+1/2, . . . . Parcel positions are calculated at timetn, tn+1, . . . .
The advance of the position of parcelk is calculated by

r n+1
k = r n

k +1tV∗ik, (35)

in which V∗ik = 1
2(V

n−1/2
ik + Vn+1/2

ik ). After all parcels move to their new positions, the
distribution of ice properties such as mass density, concentration, and thickness can be
updated by interpolations. For the leapfrog scheme, the stability condition or time step is
limited by the Courant condition. The time step for parcelk is determined by

δtk=βmin

(√
lk
|ak| ,

lk
|vk| + ck

)
, (36)

whereak and ck are the parcel acceleration and speed of sound determined by the ice
properties;β is the Courant number, which is 1.0.

Due to the small numerical diffusion, the SPH method often needs an artificial viscosity
[4, 27, 31], especially for non-viscous material. The artificial viscosity mimics a bulk
viscosity, which is used in the SPH method to damp the shock wave caused by the pressure
term. The experience from the present study indicates that the artificial viscosity is not
necessary for river ice dynamics because the ice viscosity and the water drag provide the
necessary damping. The stability analysis of the SPH algorithm by Swegleet al.[39] showed
that the instability would normally only occur in tension. It is not a problem in the present
study. This is due to the negligible tensile stress in ice and the influence of the water drag
on the ice motion.

3.2. Bed Resistance

The bed friction affects the motion of ice when it is grounded. The magnitude of the bed
friction can be calculated from the submerged weight of the ice as

|FG| = N[ρi ti − ρ(η + h)]g tanφb, (37)

in which tanφb the bed-to-ice friction coefficient. In the model, the bed frictional force
always opposes the motion of the ice or its tendency to move. A local coordinate system is
used for each parcel in calculating the parcel velocity. For an ice parcel having a velocity
Vn 6= 0 attn, the localx-coordinate is selected to coincide with the direction ofVn. Thex
andy components of the equation of motion are

Du

Dt
= Fn

t,x − |FG,x| (38)

and

Dv

Dt
=
{

Fn
t,y− |FG,y| if Fn

t,y> FG,y

0 if Fn
t,y ≤ FG,y

, (39)

in which Fn
t is the total force acting on the parcel, excluding the bed friction force. If

Vn = 0, then choose the local coordinate to coincide with the global coordinate, and both
x andy components of the equation of motion are the same as Eq. (39).
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3.3. Boundary Conditions

Upstream boundary conditions consist of ice concentration, thickness, and velocity. The
free drift approximation may be used because the observed ice velocity at the boundary is
usually not available. Along solid boundaries, such as riverbanks or dikes, the boundary
resistance to the ice motion needs to be considered. The boundary friction exists only when
the ice is moving toward the boundary. The boundary friction is calculated based on a
dynamic Coulomb yield criterion [12],

Ff = Fc+ FN tanφB, (40)

in which Ff is the friction force between the ice and the boundary;Fc is the cohesive
force, assumed to be zero; tanφB is the dynamic friction coefficient; andFN is the normal
component of the ice force acting on the boundary, which can be calculated from the
component of internal ice force normal to the boundary,RN= σNNti lB. The contact length
of the boundary ice parcel,lB, can be approximated by the square root of the parcel area
1A = m/(ρi Nti). Similar to the bed resistance, the bank frictionFf always opposes the
tangential motion, or the tendency of the motion, of the ice along the bank. To determine
RN, the interaction between the ice particle and the solid boundary has to be formulated.
Several methods, including immobile boundary particle, repulsive forces, and the method of
images, have been used in SPH to implement solid boundary conditions [24]. The immobile
boundary particle method involves placing stationary particles of fixed size along the solid
boundary. These particles are included in the summations, and their velocities are set to zero
after each time step. Since the size and momentum of moving particles change with time,
they may be pushed across the boundary due to the unbalanced ice force. This method is only
valid for inactive boundaries where there are no new forces being applied to the boundary
[24]. The repulsive force model [29, 30] has the same problem of particles crossing over
as the immobile particle method, since the force coefficients are assumed to be constant.
The method of images has been used by Libersky and Petschek [19] and Shen and Chen
[36]. In this study, the partial-slip solid boundary condition will be implemented using the
method of images. In this method, an imaginary particle is placed on the opposite side of the
boundary for every real particle that is located within a normal distance 2l of the boundary.
Each imaginary particle has the same mass, concentration, pressure, and tangential velocity
as the corresponding real particle. The normal velocity is opposite that of the real particle;
i.e., v∗n=−vn andv∗t = vt, wherevt is tangential velocity,vn is normal velocity, and the
superscript∗ denotes quantities associated with an imaginary particle. The normal internal
stresses of imaginary parcels are the same as those of the real ones—i.e.,σ ∗xxj

= σxxj ,
σ ∗yyj
= σyyj —but the shear stress is in the opposite direction—i.e.,σ ∗xyj

=−σxyj .

3.4. Smoothing Length and Search Area

Since the density of the particle distribution changes in space and time, it is necessary
to vary the smoothing length of particles in order to achieve maximum efficiency and ac-
curacy. Each particle should have its own smoothing length. Gingold and Monaghan [10]
suggested that for two-dimensional problems, the smoothing lengthl should be inversely
proportional to the square root of the particle number density. In the ice dynamics simu-
lation, the smoothing length can be estimated asl n+1= l0(

M0
Mn )

1/2, in which l0 is the initial
smoothing length, andM0 is the initial mass density. In the model,l0 is selected to be the
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linear dimension of the initial parcel area,
√
1A0. Benz [4] developed an evolution equation

for smoothing length asdl
dt = 1

2l∇ · V. Hence, the smoothing length is formulated as

l n+1= l n+1
∗ + 1t

2
l n+1
∗ (∇ · V)n (41)

and

l n+1
∗ = l0

(
M0

Mn

)1/2

. (42)

Theoretically, the larger the search range the higher the accuracy. However, the simulation
time will increase dramatically with the search area, especially in a high-ice-concentration
area where many particles accumulate in a small area. On the other hand, a small search area
may cause stability problems [39]. Considering accuracy, stability, and simulation time, a
suitable search range should be selected. The search area can be estimated by considering
an ice field with uniformly distributed particles of the same massm, size1A, and density
M . Based on its definition, the particle mass is

m=1AM=1x1yρi Nti, (43)

where1x1y = 1A, parcel size. If the smoothing length is selected as

l = l x = l y=1x=1y, (44)

then a square search area of(4l × 4l ) centered atr k will encompass 5× 5 parcels. The mass
density atr k can be determined from Eq. (18) using the Gaussian kernel as

Mk =
∑

j

mj Wkj =
∑

j

1Aj

l 2π
e−(rk−r j )

2/ l 2

= 1x1y

l 2π

(
1+ 4

e
+ 4

e4
+ 4

e2
+ 4

e8
+ 8

e5

)
M j

= 0.999928M. (45)

This shows that a search area of 4l × 4l is sufficient if the smoothing length is
√
1A.

3.5. Search of Neighboring Particles

The algorithm for particle search plays an important role in the SPH method. The linked-
list method, which uses grid cells as a bookkeeping device, is the method most commonly
used in particle simulation [17]. Although it is an efficient search method, an auxiliary grid
system is required. Since the method is grid-based, asymmetrical searches and inaccuracies
in interpolation may result when the reference particle is not located near the center of
a grid. Another disadvantage of the method is that the search is performed grid by grid,
which results in unnecessary searches, especially when the particle distribution is highly
non-uniform in the search area. Rhoades [35] proposed an improved algorithm for SPH that
is similar to the linked-list method. Although the method remains grid-based, the search is
performed particle by particle, instead of grid by grid, to save computing time. The result
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is a method slightly faster than the conventional linked-list method. Another advantage of
the method is that the number of particles in each cell at the current time step is known.
This can provide an estimate of the density and smoothing length. However, since the grid
size cannot be changed during the simulation, the asymmetrical search problem remains. In
addition, a three-dimensional array is required for two-dimensional simulations. Hernquist
and Katz [15] suggested the use of the hierarchical tree algorithm, which does not require
a grid. Although the search area is flexible, the method is time-intensive. The present study
utilizes a sorted-list algorithm to search for neighboring particles. There are a number of
sorted-list methods available, as reviewed by Helmanet al. [14]. Considering that a river
ice problem usually has a long narrow solution domain, the HeapSort method is used in the
present model, with thex-coordinates of the particles as the heap key to permit a variable
search area.

4. MODEL VERIFICATION

An analytical solution for the width-averaged static ice jam thickness profile can be
obtained for an idealized ice jam. For a hypothetical straight uniform rectangular channel
with uniform current and for which wind velocity, bank friction, and water surface slope
are all assumed to be zero, only thex-component of the momentum equation needs to be
considered. Equation (1) reduces to

Rx + Fwx = 0, (46)

in which Rx = ∂
∂x (P Nmaxti); Fwx = ρCwV2

wx, drag at the ice–water interface;Vwx is the
current velocity; andCw is the drag coefficient. Based on Eq. (46), a simple analytical
solution for the thickness profile of the static ice jam can be obtained,

ti =
(

t2
io +

2ρCwV2
wx

tan2(π/4+ φ/2)(1− ρi/ρ)ρig
xj

)1/2

, (47)

in which tio is the single layer ice thickness andxj is the distance from the leading edge of
the jam, whereti = tio.

When the bank friction is considered, an analytical solution for the width-averaged static
ice jam thickness profile can be obtained by extending the solution of Pariset and Hausser
[32],

ti = teq
(
1− e−(2µ1/B)xj

)1/2
, (48)

where the equilibrium ice thicknessteq is [32]

teq=
(

BNCwV2
wx

gµ2(ρi/ρ(1− ρi/ρ)

)1/2

, (49)

in whichµ2= N tanφ(1+ sinφ) andµ1= tanφ(1− sinφ) [3]. For φ= 46◦, µ2= 1.068
andµ1= 0.29. The above solution of Pariset and Hausser [32] assumed that the ice layer
is a continuum. Therefore the minimum jam thickness is not limited by the single-layer
thicknesstio as in Eq. (47).
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FIG. 3. Comparison of simulation results with the analytical solution, without bank resistance.

The numerical simulation results are compared in Figs. 3 and 4 with the analytical
solutions. The channel has a length of 5000 m, a width of 500 m, a constant water velocity
of 0.6 m/s, and a zero water-surface slope. The boom is located 500 m from the downstream
boundary and assumed to be 100% effective; i.e., no ice is allowed to pass the boom. Initially,
900 ice parcels of size 50× 50 m having a thickness of 0.2 m and a concentration of 0.6 are
placed over the water surface between the upstream boundary and the boom. These ice floes
are allowed to move toward the boom under the influence of the water drag. The coefficient
Cw is 0.02. The analytical and numerical solutions give comparable results.

According to the viscous–plastic constitutive law, the viscosity approaches infinity when
the ice approaches the static condition. A common way to avoid this singularity problem
is to set a large limiting value forς andυ in the numerical model. This approximation
changes the constitutive relationship to a linear viscous law and the shear stress approaches
zero when the strain rate approaches zero. Such a change will not be able to simulate the
stoppage of ice motion and the jam formation. In this study, the constitutive law is modified
for small strain rate conditions to avoid this problem. In the simulation, critical values of
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FIG. 4. Comparison of simulation results with the analytical solution, with bank resistance.

σij and P for each ice parcel are determined when the following conditions are satisfied:
(1) ice parcel velocity is less than a small critical value (0.001 m/s); (2) ice parcel velocity
is less than the value in the previous time step; and (3)δ= |ε̇1− ε̇2| is less than a small
critical valueδc= 1× 10−4 s−1. When these critical conditions are reached, the following
approximation is introduced to calculate ice stresses for the ice parcel,

σij = σijc
P

Pc
, (50)

in whichσijc andPc are values ofσij andP corresponding to the above-mentioned critical
conditions. In addition, when the velocity of an ice parcel remains less than 0.5 mm/s, the
parcel is stopped. Using this method, ice jam formation can be simulated by the viscous-
plastic constitutive law.
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5. MODEL APPLICATION

Ice retention structures such as floating booms installed upstream of a river reach with
high jamming potential could alleviate ice jam problems by preventing or reducing ice
discharge to the problem reach. A floating ice boom is designed to submerge when the
ice load becomes excessive, thereby allowing the ice to pass over the boom. In order for
the boom to be effective additional hydraulic conditions have to be satisfied. The surface
water velocity at the boom site has to be less than a critical entrainment velocity so that ice
floes arriving at the site will not turn under at the boom or at the leading edge of the ice
accumulated behind the boom. The flow velocity underneath the ice accumulation should
also be less than a critical erosion velocity. Due to the highly unsteady nature of river ice
processes, the use of laboratory models or field tests to determine the feasibility and design
of ice booms can be costly and difficult. Numerical modeling provides a viable alternative
for this purpose, as demonstrated in the following feasibility study for an ice boom in the
Missouri River upstream of the Mississippi–Missouri River confluence.

The middle Mississippi River, which stretches 198 miles from its confluence with the
Missouri River near St. Louis to where it joins the Ohio River at Cairo, Illinois, is a vital
navigation route. During winter months, ice from the Missouri River and the ice generated
in the uncontrolled sections of the Mississippi River can form accumulations that block off
the middle Mississippi to shipping. Tuthill and Mamone [40] suggested the possibility of
installing ice booms in the lower Missouri River to reduce the potential for ice jams in the
middle Mississippi River. They examined the winter flow conditions in the Missouri River
and suggested that river mile (RM) 16 is a possible location for an ice boom. A numerical
study was performed using the present numerical model to study the feasibility of such an
installation [20]. A simulation of the boom load resulting from an ice run, which caused an
ice jam in the middle Mississippi River in January 1977, is presented in this section. The
model domain covers the reach between RM 13 and RM 20 with the boom located at RM
16. The channel geometry is shown in Figs. 5 and 6.

The bed roughness was first calibrated based on the observed water level and discharge
data for an open water condition that occurred in September 1994 and compared with
the backwater simulation results of Tuthill and Mamone [40]. The ice model parameters
were calibrated with the data of the January 1997 ice jam event. The calibrated model
parameters are given in Table I. The initial condition was a steady state ice-free flow
at a discharge of 566 m3/s(20,000 cfs). The downstream boundary condition imposed at
RM 13 was a water surface elevation of 123.6 m(405.6 ft). Upstream boundary conditions
consisted of a constant water discharge of 566 m3/s(20,000 cfs) and an ice discharge of
11.3 m3/s(400 cfs). The goal of the simulation was to examine the development of ice

TABLE I

Parameters Used in the Ice Dynamic Simulation

Parameter Description Value

Nmax Maximum ice concentration 0.6
φ Internal friction angle of ice 46◦

tanφ Boundary friction coefficient 1.04
j Empirical constant 15

ni Manning’s coefficient on ice 0.02∼ 0.06
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FIG. 5. Bed elevation between RM 13 and RM 20.

jam and boom load under a normal flow condition assuming that the boom was 100%
effective. Limiting conditions for ice accumulation behind the boom were not imposed in
the simulation. It was assumed that no ice entrainment or erosion would occur and that
no ice would pass the boom. The simulation results indicated that the ice thickness at the
boom location was large and that the ice grounded across most of the channel width near

FIG. 6. Bed elevation in the vicinity of the boom.
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FIG. 7. Simulated ice thickness distribution behind the boom,t = 8 h.

the boom, as shown in Figs. 7–9. The ice accumulation increased upstream water levels
significantly, as shown in Fig. 10. The load distribution on the boom is shown in Fig. 11.
The boom load leveled off as the jam extended upstream. This was due to the grounding
of the jam, as well as the increase in bank resistance as the jam progressed upstream. The
maximum load per unit width was in the range of 40 to 50 kN/m, which was too high for
a conventional river ice boom. Before the present study, ice retention behind booms was
considered to be marginally possible, based on a conventional one-dimensional static ice
jam model [40]. For problem ice years on the middle Mississippi River, average Missouri
River discharge is about 850 m3/s(30,000 cfs). Numerical simulations carried out in the
present study found that ice retention behind booms is unfeasible even at a much lower
discharge of 566 m3/s(20,000 cfs). Additional simulations also showed that under-ice water
velocities near booms were sufficiently high to cause ice erosion and to halt upstream ice
cover progression. Ice retention behind booms is not feasible in this reach, unless a specially
designed boom with high retention capacity can be developed.

FIG. 8. Simulated ice thickness distribution behind the boom,t = 10 h.
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FIG. 9. Simulated ice thickness distribution behind the boom,t = 14 h.

FIG. 10. Simulated water surface profiles.

FIG. 11. Simulated boom load variations across the channel.
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6. SUMMARY AND CONCLUSION

A two-dimensional numerical model for dynamic transport and jamming of surface
ice in rivers is presented. The hydrodynamic component of the model uses an Eulerian
finite-element method, while the ice dynamic component of the model uses the Lagrangian
smoothed-particle hydrodynamics method. The model considers the moving surface ice
as a continuum. The internal ice resistance is formulated according to a viscous–plastic
constitutive law, in which the pressure term is formulated by modifying the coulomb-type
constitutive relationship for static ice jams. The partial-slip dynamic boundary condition
for ice along river banks and other solid boundaries is treated by the method of images. Ice
entrainment at floating ice booms or the leading edge of the ice accumulation, erosion of ice
on the underside of the ice accumulation, and the limiting ice boom load for ice retention
were considered in the model.

The numerical model was validated with analytical solutions for idealized static ice jams
with or without bank friction. The model was used to study the feasibility of using ice booms
to retain ice in the lower Missouri River to reduce the ice discharge into the Mississippi
River. A conventional one-dimensional ice jam model predicted that stable ice accumulation
was possible [40], but was unable to address the dynamic processes as well as ice erosion
and entrainment. The present two-dimensional ice dynamic model proved to be a valuable
tool for addressing important design issues that could not be answered by conventional
methods. The model was able to determine if ice retention behind a proposed boom was
possible. It could also determine the load distribution along the boom and answer the
important question of whether the accumulation behind the boom would be able to progress
upstream. In addition to its application in ice boom designs, the numerical model is capable
of simulating dynamic ice transport and jamming processes in natural rivers with complex
geometry and flow conditions [21].
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